If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+4w-120=0
a = 1; b = 4; c = -120;
Δ = b2-4ac
Δ = 42-4·1·(-120)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{31}}{2*1}=\frac{-4-4\sqrt{31}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{31}}{2*1}=\frac{-4+4\sqrt{31}}{2} $
| x^2+10x+0=-4 | | m²+10m+24=0 | | 3+0.72x=5.25+0.25x | | 30+4x+100-x+7x=180 | | 10)6(−5x+6.5)=279 | | 3(2x-1)/4=1+2(x+2)/3 | | x=-2x^2+8x+45 | | -x2-22=12 | | 2(x+25)+2(2x)=50 | | 11x-4=57 | | 12(n-5)=-12(n+10) | | −3(1+6x)=14−x | | X+104+x+100=180 | | (3x−1)2−5(x−2)−(2x+3)2−(5x+2)(x−1)=0 | | 4p=414/5 | | 4x+6+3=17 | | 6x-1+6x=11 | | 11x-4=90 | | 6-x=4{5+x}-4 | | 11x-4=13x+7 | | 5x+4=4+3x+20 | | 15x+10+17x-6=189 | | x3=−8x= | | -5(x+9)-8=-53 | | 6h=36/h=6 | | S(h)=4^(h+2) | | 20+0.89x=0.99x | | 10x^2-9x-36=0 | | g+12=32/g=22 | | 5y-1)=(8y+12) | | 6y+2.22+6y=13.32 | | 4c−10=2(2c−5) |